BACKGROUND: CD200R1

Genetic signature

- Using the 23ME-resistant database, a novel immune-oncology genetic signature associated with CD200R1, CD200, and its signaling protein, DOK2, was identified, suggesting that it plays a role in antitumor immunity (Fisher’s test).

CD200R1 inhibitory pathway

- CD200R1 is an inhibitory receptor predominantly expressed on CD200R1 inhibitory pathway
- Using the 23andMe genetic database, a novel immuno-oncology genetic

Genetic signature

- CD200R1 expression (MFI)
- CD200R1 expression (MFI)

RESULTS

Increased CD200R1 expression on TILs may contribute to an immunosuppressive microenvironment

23ME-00610 blocks binding of CD200 to CD200R1

- Binding of CD200 to CD200R1 initiates an intracellular signaling cascade that mediates antitumor immune activity to prevent or reverse immune-cell tolerance in immune-cell subsets, such as T cells and myeloid cells.

23ME-00610 enhances PBMC-mediated tumor cell killing in a dose-dependent manner

REFERENCES

- 23ME-00610 is a high-affinity, first-in-class, anti-CD200R1 antibody with immune-activating properties, including:
- **23ME-00610 is a high-affinity, first-in-class, anti-CD200R1 antibody with immune-activating properties, including:**

CONCLUSIONS

- **CD200R1 expression was elevated on immune cells in tumors compared to the peri-tumor, and the inhibitory function of this pathway on T cells was confirmed, suggesting the CD200R1/CD200R1 axis contributes to the immunosuppressive TME.**
- **23ME-00610 is a high-affinity, first-in-class, anti-CD200R1 antibody with immune-activating properties, including:**

-- Enhancement of CD200-mediated suppression of chronically stimulated T cells.
-- These data demonstrate that 23ME-00610 has the potential to reverse CD200-mediated immune suppression in the TME and reverse T-cell killing of cancer cells.

-- The influence of CD200R1-expressing myeloid cells on antitumor immunity warrants further investigation.
-- The safety, pharmacokinetics, and antitumor activity of 23ME-00610 are currently being evaluated in patients with advanced solid tumors in Phase 1 clinical trials (ClinicalTrials.gov Identifier: NCT01914212).