metastatic ovarian cancer: results from a multi-center multi-country Phase 1/2a expansion cohort.

Cohen Children’s Medical Center, Queens, NY, USA

Patient Phase 1 portion, 23ME-00610 had acceptable safety and tolerability, a favorable activity and killing of CD200-expressing tumor cells in preclinical studies [1] (activated T and myeloid cells and promote an immunosuppressive microenvironment in human tumors). 23ME-00610 is currently in the Phase 2a portion of a Phase 1/2a clinical trial in CD200R1 is expressed on immune cells and binds to CD200, its only known ligand in metastatic Solid Malignancies

Figure 1. 23ME-00610, a Fully Humanized, Effectorless IgG1, Inhibits H-score

METHODS

Figure 2. Phase 1/2a Study Design in Patients with Locally Advanced or Metastatic Solid Malignancies (NCT01392972)

RESULTS

Table 1. Baseline Characteristics and Patient Demographics

![Image](image1.png)

Figure 6. 23ME-00610 Optimized PKPD at 1400 mg Q3W

Figure 7. Best % Change of Summation of Diagoners of Target Lesions

Figure 8. Polygenic Risk Score (PRS) Values for Enrolled Trial Participants

Available Clinical Data Base Information

- 65-year-old female with metastatic well-differentiated mesothelial adenocarcinoma (stage IVa), initial diagnosis in 2021. She underwent 4 cycles of chemotherapy. Her disease progressed despite therapy.
- Patient enrolled in 23ME-00610-Clin-I on first dose in 2023 and has treatment ongoing for 12 cycles, as of April 2024.

CONCLUSIONS

- 23ME-00610 shows acceptable safety and tolerability, and optimized PKPD at 1400 mg Q3W in ovarian cancer patients. Severe AEs were pruritus, maculopapular rash, pruritus, hypothyroidism, and nausea.
- No TRAEs were grade 3 severity, and no grade 4 DLTs were observed.
- The PRS was calculated to assess risk for immune-mediated conditions. The PRS was generated based on clinical data and genetic risk.
- The PRS was calculated to assess risk for immune-mediated conditions. The PRS was generated based on clinical data and genetic risk.

REFERENCES

4. Vitiligo
5. Hypo-